Copied to
clipboard

G = C24.17Q8order 128 = 27

1st non-split extension by C24 of Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.17Q8, C24.147D4, C23.23C42, C25.80C22, C24.623C23, (C23xC4):12C4, (C24xC4).1C2, C24.91(C2xC4), C22.72(C4xD4), C23.46(C4:C4), C23.713(C2xD4), (C22xC4).644D4, (C23xC4).3C22, C23.125(C2xQ8), C2.1(C24:3C4), C22.62C22wrC2, C22:(C2.C42), C22.35(C2xC42), C23.336(C4oD4), C22.92(C4:D4), C23.89(C22:C4), C23.237(C22xC4), C22.56(C22:Q8), C2.1(C23.8Q8), C2.1(C23.7Q8), C2.1(C23.34D4), C2.1(C23.23D4), C22.40(C42:C2), C22.66(C22.D4), (C22xC4):9(C2xC4), C2.4(C4xC22:C4), (C2xC22:C4):10C4, C22.41(C2xC4:C4), (C2xC4):11(C22:C4), (C2xC2.C42):1C2, (C22xC22:C4).1C2, C22.83(C2xC22:C4), C2.3(C2xC2.C42), SmallGroup(128,165)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24.17Q8
C1C2C22C23C24C25C24xC4 — C24.17Q8
C1C22 — C24.17Q8
C1C24 — C24.17Q8
C1C24 — C24.17Q8

Generators and relations for C24.17Q8
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=de2, ab=ba, faf-1=ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be-1 >

Subgroups: 964 in 544 conjugacy classes, 172 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2xC4, C2xC4, C23, C23, C23, C22:C4, C22xC4, C22xC4, C24, C24, C24, C2.C42, C2xC22:C4, C2xC22:C4, C23xC4, C23xC4, C25, C2xC2.C42, C22xC22:C4, C24xC4, C24.17Q8
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C2xC2.C42, C4xC22:C4, C24:3C4, C23.7Q8, C23.34D4, C23.8Q8, C23.23D4, C24.17Q8

Smallest permutation representation of C24.17Q8
On 64 points
Generators in S64
(1 25)(2 26)(3 27)(4 28)(5 42)(6 43)(7 44)(8 41)(9 13)(10 14)(11 15)(12 16)(17 45)(18 46)(19 47)(20 48)(21 29)(22 30)(23 31)(24 32)(33 58)(34 59)(35 60)(36 57)(37 55)(38 56)(39 53)(40 54)(49 62)(50 63)(51 64)(52 61)
(1 23)(2 24)(3 21)(4 22)(5 12)(6 9)(7 10)(8 11)(13 43)(14 44)(15 41)(16 42)(17 37)(18 38)(19 39)(20 40)(25 31)(26 32)(27 29)(28 30)(33 51)(34 52)(35 49)(36 50)(45 55)(46 56)(47 53)(48 54)(57 63)(58 64)(59 61)(60 62)
(1 9)(2 10)(3 11)(4 12)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 63)(18 64)(19 61)(20 62)(29 41)(30 42)(31 43)(32 44)(33 56)(34 53)(35 54)(36 55)(37 57)(38 58)(39 59)(40 60)(45 50)(46 51)(47 52)(48 49)
(1 25)(2 26)(3 27)(4 28)(5 42)(6 43)(7 44)(8 41)(9 13)(10 14)(11 15)(12 16)(17 50)(18 51)(19 52)(20 49)(21 29)(22 30)(23 31)(24 32)(33 38)(34 39)(35 40)(36 37)(45 63)(46 64)(47 61)(48 62)(53 59)(54 60)(55 57)(56 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 63 27 47)(2 60 28 56)(3 61 25 45)(4 58 26 54)(5 18 44 49)(6 37 41 34)(7 20 42 51)(8 39 43 36)(9 17 15 52)(10 40 16 33)(11 19 13 50)(12 38 14 35)(21 59 31 55)(22 64 32 48)(23 57 29 53)(24 62 30 46)

G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,42)(6,43)(7,44)(8,41)(9,13)(10,14)(11,15)(12,16)(17,45)(18,46)(19,47)(20,48)(21,29)(22,30)(23,31)(24,32)(33,58)(34,59)(35,60)(36,57)(37,55)(38,56)(39,53)(40,54)(49,62)(50,63)(51,64)(52,61), (1,23)(2,24)(3,21)(4,22)(5,12)(6,9)(7,10)(8,11)(13,43)(14,44)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(25,31)(26,32)(27,29)(28,30)(33,51)(34,52)(35,49)(36,50)(45,55)(46,56)(47,53)(48,54)(57,63)(58,64)(59,61)(60,62), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,63)(18,64)(19,61)(20,62)(29,41)(30,42)(31,43)(32,44)(33,56)(34,53)(35,54)(36,55)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,25)(2,26)(3,27)(4,28)(5,42)(6,43)(7,44)(8,41)(9,13)(10,14)(11,15)(12,16)(17,50)(18,51)(19,52)(20,49)(21,29)(22,30)(23,31)(24,32)(33,38)(34,39)(35,40)(36,37)(45,63)(46,64)(47,61)(48,62)(53,59)(54,60)(55,57)(56,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,27,47)(2,60,28,56)(3,61,25,45)(4,58,26,54)(5,18,44,49)(6,37,41,34)(7,20,42,51)(8,39,43,36)(9,17,15,52)(10,40,16,33)(11,19,13,50)(12,38,14,35)(21,59,31,55)(22,64,32,48)(23,57,29,53)(24,62,30,46)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,42)(6,43)(7,44)(8,41)(9,13)(10,14)(11,15)(12,16)(17,45)(18,46)(19,47)(20,48)(21,29)(22,30)(23,31)(24,32)(33,58)(34,59)(35,60)(36,57)(37,55)(38,56)(39,53)(40,54)(49,62)(50,63)(51,64)(52,61), (1,23)(2,24)(3,21)(4,22)(5,12)(6,9)(7,10)(8,11)(13,43)(14,44)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(25,31)(26,32)(27,29)(28,30)(33,51)(34,52)(35,49)(36,50)(45,55)(46,56)(47,53)(48,54)(57,63)(58,64)(59,61)(60,62), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,63)(18,64)(19,61)(20,62)(29,41)(30,42)(31,43)(32,44)(33,56)(34,53)(35,54)(36,55)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,25)(2,26)(3,27)(4,28)(5,42)(6,43)(7,44)(8,41)(9,13)(10,14)(11,15)(12,16)(17,50)(18,51)(19,52)(20,49)(21,29)(22,30)(23,31)(24,32)(33,38)(34,39)(35,40)(36,37)(45,63)(46,64)(47,61)(48,62)(53,59)(54,60)(55,57)(56,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,27,47)(2,60,28,56)(3,61,25,45)(4,58,26,54)(5,18,44,49)(6,37,41,34)(7,20,42,51)(8,39,43,36)(9,17,15,52)(10,40,16,33)(11,19,13,50)(12,38,14,35)(21,59,31,55)(22,64,32,48)(23,57,29,53)(24,62,30,46) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,42),(6,43),(7,44),(8,41),(9,13),(10,14),(11,15),(12,16),(17,45),(18,46),(19,47),(20,48),(21,29),(22,30),(23,31),(24,32),(33,58),(34,59),(35,60),(36,57),(37,55),(38,56),(39,53),(40,54),(49,62),(50,63),(51,64),(52,61)], [(1,23),(2,24),(3,21),(4,22),(5,12),(6,9),(7,10),(8,11),(13,43),(14,44),(15,41),(16,42),(17,37),(18,38),(19,39),(20,40),(25,31),(26,32),(27,29),(28,30),(33,51),(34,52),(35,49),(36,50),(45,55),(46,56),(47,53),(48,54),(57,63),(58,64),(59,61),(60,62)], [(1,9),(2,10),(3,11),(4,12),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,63),(18,64),(19,61),(20,62),(29,41),(30,42),(31,43),(32,44),(33,56),(34,53),(35,54),(36,55),(37,57),(38,58),(39,59),(40,60),(45,50),(46,51),(47,52),(48,49)], [(1,25),(2,26),(3,27),(4,28),(5,42),(6,43),(7,44),(8,41),(9,13),(10,14),(11,15),(12,16),(17,50),(18,51),(19,52),(20,49),(21,29),(22,30),(23,31),(24,32),(33,38),(34,39),(35,40),(36,37),(45,63),(46,64),(47,61),(48,62),(53,59),(54,60),(55,57),(56,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,63,27,47),(2,60,28,56),(3,61,25,45),(4,58,26,54),(5,18,44,49),(6,37,41,34),(7,20,42,51),(8,39,43,36),(9,17,15,52),(10,40,16,33),(11,19,13,50),(12,38,14,35),(21,59,31,55),(22,64,32,48),(23,57,29,53),(24,62,30,46)]])

56 conjugacy classes

class 1 2A···2O2P···2W4A···4P4Q···4AF
order12···22···24···44···4
size11···12···22···24···4

56 irreducible representations

dim1111112222
type++++++-
imageC1C2C2C2C4C4D4D4Q8C4oD4
kernelC24.17Q8C2xC2.C42C22xC22:C4C24xC4C2xC22:C4C23xC4C22xC4C24C24C23
# reps14211688628

Matrix representation of C24.17Q8 in GL6(F5)

400000
010000
004000
000100
000040
000004
,
400000
010000
004000
000400
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
040000
004000
000400
000040
000004
,
300000
040000
002000
000200
000030
000002
,
300000
030000
000100
001000
000001
000010

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C24.17Q8 in GAP, Magma, Sage, TeX

C_2^4._{17}Q_8
% in TeX

G:=Group("C2^4.17Q8");
// GroupNames label

G:=SmallGroup(128,165);
// by ID

G=gap.SmallGroup(128,165);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,2,224,141,456,422]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d*e^2,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<